DESCRIPTION

The Kele UMX-8 is a unique microcomputer-based multifunction interface that expands the input or output capability of building automation controllers. It has eight SPDT output relays that provide on/off control from a jumper-selectable PWM, current or voltage input signal. The sequence of operation can be easily selected by DIP switches. A dual mode allows two UMX-8s to be controlled in sequence from a single input signal. HOA switches allow for manual override of each relay output. Feedback and LEDs provide status indication of the UMX-8. The UMX-4 provides four SPDT output relays. All jumper positions and DIP switch settings are identical to the UMX-8. The operation of the UMX-4 is identical to relays 1-4 on the UMX-8. Feedback and LEDs provide status indication of the UMX-4.

STANDARD CONTROL SEQUENCE FUNCTIONS

Multiplexed Relay Output Expander - Provides up to 16 relay outputs expansion from one BAS output Multiplexed Input Expander - Provides up to 16 inputs expansion from one BAS output and one BAS input RTU or AHU Controller - Provides multistage heating and cooling sequences with economizer
Sequencer - Up to 16 stages of sequential control
Custom Sequences - Consult Kele for details

FEATURES

- Four or eight SPDT relay outputs
- HOA switches
- LED status indication
- Field-selectable functions
- Output status feedback
- Override indication
- Field-selectable PWM, current, or voltage inputs
- Pull-apart terminal blocks

APPLICATION

The UMX is recommended for use only with BAS controllers programmable to issue discrete PWM, current, or voltage signal commands. For sequential relay control from a varying analog current or voltage signal, use a UCS sequencer module.

SPECIFICATIONS			
Supply Voltage	24 VAC $\pm 10 \%$, half-wave; or $24 \mathrm{VDC} \pm 10 \%$	Feedback	
Supply Current			for relays 1-4
UMX-4	210 mA @ 24 VAC; 90 mA @ 24 VDC maximum	UMX-8	Two outputs, $1-5 \mathrm{~V}$ (3 mA) for relays 1-4 and for relays 5-8
UMX-8	350 mA @ 24 VAC; 150 mA @	Relay Output	5A @ 24 VAC/VDC
	24 VDC maximum	Wiring Terminations	Screw terminals
Input	PWM, 0-20 mA, 0-5V, 0-10V, 0-15V,	Operating Temperature	32° to $158^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
	jumper selectable	Operating Humidity	5\% to 95\% RH (non-condensing)
Input Impedance	250Ω (mA input) maximum; $46.4 \mathrm{k} \Omega$ minimum (VDC input)	Dimensions	$\begin{aligned} & 3.3 " \mathrm{H} \times 7.0 \text { "W x } 1.6^{\mathrm{LND}} \mathrm{D} \\ & (8.3 \times 17.8 \times 4.0 \mathrm{~cm}) \end{aligned}$
Output		Weight	
UMX-4	Four SPDT relays	UMX-4	$0.8 \mathrm{lb}(0.4 \mathrm{~kg})$
UMX-8	Eight SPDT relays	UMX-8	$1.0 \mathrm{lb}(0.5 \mathrm{~kg})$
Override	Transistor switch, 30 VDC @ 100 mA maximum	Approvals Warranty	RoHS 1 year

TRANSDUCERS

MULTI-FUNCTION INPUT / OUTPUT EXPANDER

UMX-4, UMX-8

OPERATION

Single and Dual UMX Control

The UMX can be operated in both a single and dual operating mode. In the single mode, one UMX is controlled from a single current/voltage or PWM signal. In the dual mode, two UMXs are controlled in sequence, providing up to 16 relay outputs from a single current/voltage or PWM input. This dual UMX control is not available with all control sequences. Refer to the control sequences in Tables 2 and 3 for availability. If single UMX control is used, refer to Table 2 for DIP switch settings. For dual UMX control, refer to Table 3.

Pulse Width Modulation (PWM)

To control the UMX from a PWM signal, put the input selection jumper on the UMX in the PW position. Set the operating mode DIP switches (Tables 2 or 3) as required. Refer to the control sequence in Tables 4 through 7 for time base and control sequence information.

Current/Voltage Input (ANA)

The UMX can be controlled from a current or voltage input. To operate in this mode, set the input selection jumpers on the UMX as shown in Table 1. Set the operating mode DIP switches (See Tables 2 or 3) as required. Refer to the Control Sequence Tables 4 through 7 for time base and control sequence information.

TABLE 1. CURRENT/VOLTAGE INPUT JUMPERS

Current/Voltage input	$0-20 \mathrm{~mA}$	$0-5 \mathrm{~V}$	$0-10 \mathrm{~V}$	$0-15 \mathrm{~V}$
AN	MA	5 V	10 V	15 V

OPERATING MODE (DIP SWITCHES 1, 2, 3, AND 4)

WM	ANA	L1	L2	HSL	CSL	SVT	LVT	\mathbf{y}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$
X								0	0	0	1
	X			X		X		0	1	0	0
	X			X			X	0	1	0	1
	X				X	X		0	1	1	0
	X				X		X	0	1	1	1

PWM Pulse-Width-Modulated Input Signal
ANA Current/Voltage Input Signal
L1 Level 1 UMX (Dual UMX Mode)
L2 Level 2 UMX (Dual UMX Mode)
HSL Hold Outputs on Signal Loss (Current/Voltage)
CSL Clear Outputs on Signal Loss (Current/Voltage)
SVT Short Signal Validation Time (Current/Voltage)
LVT Long Signal Validation Time (Current/Voltage)
fBLE 3. DUAL UMX CONTROL

NM	ANA	L1	L2	HSL	CSL	SVT	LVT	DIP SWITCHES						
X		X						$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$				
X			X					0	0	1	0			
	X	X		X		X		1	1					
	X	X		X			X	1	0	0	0			
	X	X			X	X		1	0	1	1			
	X	X			X		X	1	0	1	1			
	X		X	X		X		1	1	0	0			
	X		X	X			X	1	1	0	1			
	X		X		X	X		1	1	1	0			
	X		X		X		X	1	1	1	1			

DIP Switches

0 Off
1 On

L1, L2 - UMX Levels - Dual UMX Mode Only

In the Dual UMX mode, two UMXs respond in sequence to a single input signal. Using the DIP switch settings shown in Table 3, assign the first UMX to Level 1 (L1) and the second UMX to Level 2 (L2). Dual UMX control is available in most current/voltage and PWM modes. PWM time base doubles in Dual UMX mode.

HSL, CSL - Signal Loss Hold - Current/Voltage Input Mode Only
When using a current/voltage input, the UMX can be programmed to either hold all relays in their current state (HSL) or turn all relays off (CSL) upon a loss of the input signal. Use DIP switch settings shown in Table 2 or Table 3 to program this feature.

SVT, LVT - Signal Validation Time - Current/Voltage Input Mode Only

When varying a current/voltage input signal to the UMX it is necessary for the input to remain at the desired value for a set length of time. This prevents other relays on the UMX from energizing while the input signal is changing values. This set length of time, or validation time, can be selected for either one (1) second (SVT) or three (3) seconds (LVT). Use the DIP switch settings in Table 2 or 3 to select the validation time.

CONTROL SEQUENCES (DIP SWITCHES 5, 6, 7, AND 8)

*Dual UMX control available in both current/voltage and PWM modes. PWM time base doubles in "Dual UMX" mode.

OFF, ON, ON, OFF For PWM signal, use

TRANSDUCERS

MULTI-FUNCTION INPUT / OUTPUT EXPANDER

UMX-4, UMX-8

WIRING

FEEDBACK

The UMX-8 has two feedback voltage output circuits labeled FBK1 (relay outputs 1-4) and FBK2 (relay outputs 5-8). The UMX-4 has one feedback voltage output circuit labeled FBK1 (releay outputs 1-4). When a relay output is energized, the following voltage is added to the feedback output:

FBK1 - Feedback Circuit \#1

Relays $1,2,3,4$	Off	1.0 V
Relay 1	On	Add 0.27 V
Relay 2	On	Add 0.53 V
Relay 3	On	Add 1.07 V
Relay 4	On	Add 2.13 V

FBK2 - Feedback Circuit \#2

Relays $5,6,7,8$	Off	1.0V
Relay 5	On	Add 0.27 V
Relay 6	On	Add 0.53 V
Relay 7	On	Add 1.07 V
Relay 8	On	Add 2.13 V

Example: If outputs 1 and 3 are energized and 2 and 4 are de-energized, the voltage output on FBK1 will be 2.34 V $(1 \mathrm{~V}+0.27 \mathrm{~V}+1.07 \mathrm{~V}=2.34 \mathrm{~V})$. The same would be true for FBK2 if relay outputs 5 and 7 were energized, and 6 and 8 were de-energized.

ORDERING INFORMATION

MODEL
UMX-4
UMX-8

DESCRIPTION

Four stage multifunction expander with HOA switches
Eight-stage multifunction expander with HOA switches

